If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-100b^2+2304=0
We add all the numbers together, and all the variables
-99b^2+2304=0
a = -99; b = 0; c = +2304;
Δ = b2-4ac
Δ = 02-4·(-99)·2304
Δ = 912384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{912384}=\sqrt{82944*11}=\sqrt{82944}*\sqrt{11}=288\sqrt{11}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-288\sqrt{11}}{2*-99}=\frac{0-288\sqrt{11}}{-198} =-\frac{288\sqrt{11}}{-198} =-\frac{16\sqrt{11}}{-11} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+288\sqrt{11}}{2*-99}=\frac{0+288\sqrt{11}}{-198} =\frac{288\sqrt{11}}{-198} =\frac{16\sqrt{11}}{-11} $
| 2(x+5)=-6(x-3) | | 12=q+5 | | (w+5)=2 | | 10(v-8)=40 | | 21+x=54 | | i−13=15 | | 7=-3x+40 | | e+98=56 | | v-5=-12 | | 15(c-3)+5=14(5c+4) | | y=1/4(1)-2 | | 7–3(x+9)–2x=15 | | x−10=22 | | 21=x=54 | | x−3=13.8. | | b+78=98 | | m−3=13.8. | | 48+3x=45 | | 20=10(d+7) | | -8b=12=6 | | 6+(3-2n)=2 | | 8(q-3)=8 | | 3813=35p+41 | | -6+a=21 | | (3x-2)=-4 | | -4x–3=33 | | f+21=-20 | | k+45=11 | | g-14=26 | | 4+3n=3n+4n-8 | | 3-4u=9 | | (x+0)(x-8)=0 |